
Store Selector
Dec1206

Client: Google

Chris W. Morgan
Blair M. Billings
Kerrick A. Staley
Timothy R. Kalpin

Kurt D. Kohl

Problem Statement

It's very easy to compare prices across
multiple sites on the internet, but this is far
more difficult with physical and local stores.
Store Selector will allow customers to easily
locate the best prices on the products they
plan to purchase at such stores, and provide
other features to optimize the shopping
experience.

Group: Dec1206
Project: Store Selector

Client: Google

Market Survey

● Account Based
○ LivingSocial
○ Groupon
○ ScoutMob

● Coupon Apps
○ GeoQpons
○ The Coupon App

Our application brings together select functions of each
site mentioned above and gives the user an easy-to-
manage account that responds to their shopping habits
and allows them to compare prices across local stores.

Group: Dec1206
Project: Store Selector

Client: Google

Concept

Group: Dec1206
Project: Store Selector

Client: Google

High-Level Description

● Consumer Web Interface
○ Account-based
○ Maintain shopping lists and transaction history
○ View discounts and compare store prices

● Consumer Android Application
○ Includes features of Consumer Web Interface in a

convenient Android Application
○ Allows access to GPS and voice functionality

Group: Dec1206
Project: Store Selector

Client: Google

High-Level Description

● Store Manager Interface
○ Web application
○ Store managers will enter and maintain product

data via this portion of our product
● Scraper

○ Dumps product descriptions and pricing from the
Iowa State Bookstore; used for populating our
database for initial testing

Group: Dec1206
Project: Store Selector

Client: Google

Functional Requirements

● Allow store managers to enter and maintain
pricing data

● Allow customers to create and maintain
item lists via Web Interface

● Allow customers to enter input via the voice
interface on Android devices

● Allow customers to perform same
functionality as the Web Interface on an
Android device, plus GPS and voice

Group: Dec1206
Project: Store Selector

Client: Google

Non-functional Requirements

● Be easy to use and aesthetically pleasing
● Ensure price data is accurate
● Be quick and responsive
● Provide clear feedback if not enough data is

available to answer query
● The code in the final product shall be

modular, readable, and well-documented

Group: Dec1206
Project: Store Selector

Client: Google

Constraints and Considerations

● Time constraints
○ Complete all iterations and implementations by the

end of the semester
● User's mode of use

○ Android smartphone
○ Desktop computer webpage

Group: Dec1206
Project: Store Selector

Client: Google

System Diagram

Group: Dec1206
Project: Store Selector

Client: Google

Design Decisions: Architecture

Issue:
How should the overall system be structured?

Factors affecting issue:
● The design requirements are well-matched to the

problems that modern web frameworks address (e.g.
managing complex data, rendering the data to clients
over the internet)

● A web framework yields better-structured code and
reduces unnecessary work (compared to an ad-hoc setup
using CGI) when used for its intended purpose

Group: Dec1206
Project: Store Selector

Client: Google

Design Decisions: Architecture

Decision:
● Straightforward: Design the system around a web

framework
● The web framework will prescribe the overall

architecture of the application; most frameworks follow
the model-view-controller pattern

Group: Dec1206
Project: Store Selector

Client: Google

Design Decisions: Framework

Issue:
Which web framework should we use?

Alternatives:
● Django

○ Python-based
○ Emphasizes automation and avoiding duplication (DRY)
○ Uses the model-view-controller pattern

● Grails
○ Groovy-based
○ Emphasizes convention-over-configuration
○ Also uses the model-view-controller pattern

Group: Dec1206
Project: Store Selector

Client: Google

Design Decisions: Framework

Factors affecting issue:
● Python has a large ecosystem around it, and Groovy can

use Java libraries and therefore leverage the Java
ecosystem, so library support wasn't a concern

● Two group members had experience with Grails, and all
had experience with Java (Groovy is similar to Java)

● One group member had experience with Django, and
some (but not all) group members had Python experience

Decision:
● Use Grails, since it best matches the team's skill set

Group: Dec1206
Project: Store Selector

Client: Google

Design Decisions: Native/Hybrid

Issue:
How should we implement the mobile application?

Alternatives:
● Native Android application

○ Written in Java
● Hybrid Android/web application

○ Android-specific components written in Java
○ Platform-agnostic parts created with web technologies
○ Android-specific code provides an interface to native

functionality (microphone, GPS) that is used by the
web code

Group: Dec1206
Project: Store Selector

Client: Google

Design Decisions: Native/Hybrid

Factors affecting issue:
● A native application is conceptually simpler: fewer

interacting components → fewer places for bugs
● A native application provides a look-and-feel that's

consistent with the user's other apps
● A fully native application would however divert resources

and cause duplicated functionality: we're already making
a browser-based client, why not reuse its code

Decision:
● Make a hybrid application integrating a mobile-optimized

version of our existing site with Android-specific features

Group: Dec1206
Project: Store Selector

Client: Google

Design Decisions: Scraper

Issue:
Python has powerful libraries (BeautifulSoup) for web
scraping, but our application is written in Groovy; interfacing
the two languages would be cumbersome.

Decision:
We stored scraped data in a widely-supported open-source
database (MySQL), so we could dump it from Python and
later access it in Groovy. The database acted as a liaison,
bypassing the need for direct communication between the
two languages.

Group: Dec1206
Project: Store Selector

Client: Google

Functional
Decomposition - Frontend

● Frontend
○ Hybrid Android app for mobile interface
○ HTML/CSS/Javascript web pages for browser

interface

Group: Dec1206
Project: Store Selector

Client: Google

Functional
Decomposition - Backend

● Backend
○ Parsers for consumers' product lists, store

managers' inventories, and websites
○ Groovy Server Pages for dynamically

generated/loaded web pages
○ Database

Group: Dec1206
Project: Store Selector

Client: Google

Database Schema

Group: Dec1206
Project: Store Selector

Client: Google

Testing

● We tested the Android app across multiple
Android devices to ensure cross-device
compatibility

● We tested the website in several popular
browsers

● We conducted functional and usability
testing across the various components of our
application

● We would have liked to complete more field
and usability testing, but our desire to
complete more features cut our testing time

Group: Dec1206
Project: Store Selector

Client: Google

Screen - My Lists

Screen - Locate Items

Screen - Locate Items (with map)

Screen - Create Transaction

Screen - Manage Inventory

Future Work

● Community-driven Suggestions
● Bundled Offers
● Wiki-style deal entry for users
● Deal rating system
● Multi-platform (mobile) support
● Provide an API to access users' saved lists

Group: Dec1206
Project: Store Selector

Client: Google

 Questions ??

Group: Dec1206
Project: Store Selector

Client: Google

Platforms Used

● Mobile Platform: Android OS
● Web Framework: Grails
● Database: MySQL

Group: Dec1206
Project: Store Selector

Client: Google

Design Tradeoffs

● A hybrid web/native app made optimizing
for Android more difficult, but it enabled us
to work more efficiently on the mobile
version and would make extending the
application to other platforms (e.g., iOS)
much easier in the future.

Group: Dec1206
Project: Store Selector

Client: Google

Design Issues

Problem:
Implementing the mobile app as a native Android app
would divert resources and create duplicated functionality.

Solution:
We created a hybrid web/native app. The app's chrome
and navigation were generated by native code, but most
information was presented as mobile-optimized web pages
in embedded web views. The native component also
exposed microphone and location functionality to the web
component.

Group: Dec1206
Project: Store Selector

Client: Google

Risks & Mitigation

● Have to support several different interfaces
○ Focus on Android app for customers
○ Focus on web app for store managers

● Unclear pricing availability on the web.
○ Allow users to flag incorrect data for modification

or deletion.
○ Encourage and allow companies and businesses to

submit their own information.

Group: Dec1206
Project: Store Selector

Client: Google

Responsibilities

● Database - Chris
● Web Interface - Blair
● Mobile Interface - Kurt
● Voice Interface - Timothy
● Web Scraper and Miscellany- Kerrick

Group: Dec1206
Project: Store Selector

Client: Google

Status

● Scraped data from ISU Bookstore
● First iteration completed

○ Web interfaces
○ Android app
○ Voice interface

● Server in progress
● Integration begun

Group: Dec1206
Project: Store Selector

Client: Google

Schedule

Group: Dec1206
Project: Store Selector

Client: Google

Testing

● Front End Testing
○ Usability testing
○ Manual testing
○ Integration testing between controllers and views

● Back End Testing
○ Stress testing
○ Fuzzing (random data)

Group: Dec1206
Project: Store Selector

Client: Google

